Mechanisms of beta-adrenergic receptor regulation in cultured chick heart cells. Role of cytoskeleton function and protein synthesis.
نویسندگان
چکیده
To examine mechanisms by which cardiac tissue regulates the beta-adrenergic receptor and physiological response to beta-adrenergic agonists, we studied the effects of cytoskeletal disrupting agents and inhibition of protein synthesis on receptor properties and contractile response to isoproterenol in intact cultured ventricular cells from embryonic chick heart. Thirty minutes of exposure of intact cells to 1 microM isoproterenol produced loss of the high-affinity state (KD = 4.5 +/- 1.5 nM) of the receptor found in cell membranes with no loss of total receptor number, whereas there was concomitant decline in the contractile response to 1 microM isoproterenol to 41 +/- 16% (SD) of control. Contractile response recovered within 60 minutes of agonist removal to 78 +/- 11% of initial response. There was concomitant recovery of the high-affinity state of the receptor, so that 1 hour after agonist removal there was 72% of the initial proportion of high-affinity receptors. This desensitization of the contractile response, as well as recovery after agonist removal, was markedly blunted by preincubation with cytochalasin B so that contractile responsiveness to isoproterenol was maintained at 77 +/- 13% of the initial response. Colchicine (10 microM) was without effect on the first 30 minutes of agonist-induced desensitization. More prolonged agonist exposure (1 microM isoproterenol for 24 hours) produced colchicine-sensitive loss of receptors from intact cells to 40% of control levels. Full recovery of receptor number occurred over 72 hours; this was completely blocked by cycloheximide (P less than 0.01). Thus, rapid desensitization and resensitization of the beta-receptor-mediated contractile response is associated with alterations in high-affinity agonist binding and appears to be modulated by microfilaments. Receptor down-regulation is dependent on functional microtubules, and recovery of these receptors after agonist removal requires protein synthesis.
منابع مشابه
Mechanisms of /9-Adrenergic Receptor Regulation in Cultured Chick Heart Cells Role of Cytoskeleton Function and Protein Synthesis
To examine mechanisms by which cardiac tissue regulates the /S-adrenergic receptor and physiological response to /9-adrenergic agonists, we studied the effects of cytoskeletal disrupting agents and inhibition of protein synthesis on receptor properties and contractile response to isoproterenol in intact cultured ventricular cells from embryonic chick heart. Thirty minutes of exposure of intact ...
متن کاملThe Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review
Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...
متن کاملEffect of Adenosine Agonists on the Proliferation and Differentiation of Chick Embryo Fibroblasts in Three Dimensional Reconstituted Tissue Constructs
Previous studies indicate that organ fibroblasts play an important role in wound healing, collagen production, remodeling processes and pathogenesis of progressive heart, lung, renal and hepatic fibrotic diseases. Several studies suggest a possible inhibitory role for adenosine in the regulation of fibroblast proliferation. The effect of adenosine A2 agonists on proliferation and differentiatio...
متن کاملMechanism of Action of the Thyroid Hormone on the Heart
SUMMARY The foliowing cardiac effects may be attributed to thyroxin: 1-Thyroxin augments all anaerobic processes in the body includ::ng the heart, and decreases the glycogen content of the heart ( 1, 2, 5, 27). The resistance of the heart to anoxia is increased in hyperthyroidism ( 25). 2- Thyroxin influences the cardiac weight and prevents cardiac atrophy (3, 8, 10, 11, 19, 20, 21, 30...
متن کاملEffects of Taurine, Sestrin 2 and Phyllanthin on coronary artery diseases
Heart failure is a growing epidemic in the worldwide. Atherosclerosis is a major mechanism of cardiovascular disease including myocardial infarction and peripheral arterial disease. Moreover, it causes many diseases and deaths around the world. Atherosclerosis, like coronary artery disease (CAD), is associated with inflammation and oxidative stress. The current article has been collected the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 57 1 شماره
صفحات -
تاریخ انتشار 1985